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Abstract

We empirically study the spatio-temporal location problem motivated by an online retailer

that uses the Buy-Online-Pick-Up-In-Store fulfillment method. Customers pick up their orders

from trucks parked at specific locations during specific times, and the retailer’s problem is to

determine where and when these pick-ups occur. We combine demographic and economic data,

business location data, and the retailer’s historical sales and operations data to predict demand

at potential locations. We introduce a novel two step procedure that combines machine learning

and econometric techniques. First, we use a random forests algorithm to predict demand when

a particular location operated in isolation. Then, we use a fixed effects regression to estimate

spatial and temporal cannibalization effects that cannot be captured in the first step. Based on

the predicted demand, we develop heuristics to improve the pick-up location configuration and

schedule. We estimate a 36% increase in revenue from the improved location configuration and

schedule.

1 Introduction

The advancement of technology and the e-commerce industry has introduced many new forms of

business operations. Many traditional brick-and-mortar retailers have converted into omnichannel

retailers and are attempting to capture more sales by providing more options to customers. The

Buy-Online-Pick-Up-In-Store (BOPS) format is one aspect of omnichannel retail that allows cus-

tomers to shop online and obtain the goods offline. This format reduces the customer wait time

for goods relative to the wait time if the goods were shipped.
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We partner with an online retailer that was founded on the BOPS fulfillment idea: instead of

having offline stores, the retailer uses delivery trucks parked at various convenient pick-up locations,

which include schools, businesses, gyms, and parking lots to deliver goods to customers. Upon

placing an order, customers choose the date and location at which to pick-up their order from a

list of pre-specified options. While this business format may be less convenient to the customers

than the traditional brick-and-mortar format due to limited availability, the retailer can use its

delivery trucks to capture a greater share of consumer demand by accessing multiple markets

in a single week with a limited capital investment. These additional markets can include small

towns with few traditional brick-and-mortar retailers, and in these towns this new format enhances

customer convenience. As the retailer has expanded, it has created new pick-up locations and

closed underperforming locations. Some of the locations are open once a week whereas others open

multiple times a week. When adding a new location, the retailer considers other pick-up locations

nearby, its competitors’ locations, the income level of the area provided by the US census, and other

relevant information based on a site visit. However, despite the use of this information, there are

still large differences in the performance of locations. In fact, optimizing the operations in terms

of both location and time is a low cost, yet difficult problem for many reasons: 1. the retailer

needs to be able to accurately estimate potential profitability in each market; 2. the retailer needs

to identify a specific location that can capture as much demand as possible within a market; 3.

if the market demand is big enough for one location operating once a week, the retailer needs to

determine whether it should expand in the market by operating another day of week at the same

location, or operating two separate locations. Additional operations may cannibalize the sales from

other locations, and therefore, the optimal course of action may not be clear. The company believes

that fine tuning its pick-up locations and schedule using analytics will improve its revenue, most

of which will be converted into profit. This unique setting provides high-frequency data on the

performance of different locations and creates an opportunity to study the location problem in

both the time and space dimensions, which we refer to as the spatio-temporal location problem

throughout the paper.

We formalize the spatio-temporal location problem as an integer program where the retailer

determines when and where it should operate its locations to maximize revenue. In addition, we

account for two types of cannibalization effects. The first type of cannibalization happens among

locations, and we refer to it as spatial cannibalization. It represents the decrease in daily revenue

when there is another nearby pick-up location. Another type of cannibalization happens within
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a location, and we refer to it as temporal cannibalization. It represents the decrease in a daily

revenue when a location operates more than once a week. Both cannibalization effects happen due

to customers who prefer the other pick-up location or time, yet would have used this location if the

other option did not exist. In summary, we consider the space and time dimensions of the location

problem, while accounting for cannibalization effects in each dimension.

In the operations research literature, the space dimension of location problems has been studied

extensively. The prior literature includes the facility location problem (also known as the plant,

warehouses, or distribution center location problem), which was studied since the early 1960’s (see

an early review by Krarup and Pruzan (1983) or a recent textbook by Daskin (2013)). These models

assume a deterministic set of demand points and require choosing K facility locations to minimize

the sum of distances (or cost to travel) from facilities to all demand locations. Although the demand

for each facility is determined by its location, the total demand that will be captured is fixed. On

the other hand, our model focuses on the demand (revenue) impact of a chosen set of locations,

accounting for cannibalization across locations. In this spirit, out model resembles the competitive

facility location problem. (see Berman et al. (2009) for a review of the competitive facility location

problem literature). Another demand-focused location is the classic Hotelling model, which splits

demand among locations by assuming customers care only about proximity and choose the closest

location; see Hotelling (1990). The gravity model, as reviewed in Ghosh et al. (1995), assumes that

each location has an attractive factor in addition to a distance decay function that determines the

demand. Contrary to these previously studied spatial location problems, where demand is given and

cannibalization follows from the imposed structure of the researcher’s model, we estimate demand

and cannibalization empirically.

The time dimension of the location problem has also been studied by researchers who have built

on the traditional facility location problem model (see Owen and Daskin (1998), Snyder (2006),

Melo et al. (2009) for detailed reviews). There are two main types of location problems that

consider the time dimension. In dynamic location problems, the objective is to locate facilities

during specified time periods within which a currently attractive location can become unattractive

later. In stochastic location problems, some parameters may fluctuate from time to time; these

models contain either a probability distribution of uncertain parameters or different outcomes for

a set of scenarios that result from the uncertain parameters. In contrast to these other models, our

model considers demand cannibalization effects, which we estimate empirically. Furthermore, we

consider seasonality in various time scales (e.g. day of week, month, year) in our model.
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To estimate demand for each location, we combine demographic and economics data, business

location data and the retailer’s historical sales and operations data. Using these the varied sources of

data, we try to capture the micro factors (e.g. competitors, traffic generating businesses, etc.) and

macro factors (e.g. population, income level, etc.) that affect demand at each potential location.

We end up with more than 200 attributes in our dataset. With this massive data, we use random

forests, a machine learning algorithm, to predict demand; see Hastie et al. (2009) for a book on

statistical learning. Ferreira et al. (2015) also uses a machine learning technique, which is very

similar to ours, to predict demand for an online retailer. They compare the prediction performance

against five other regression models and find that over multiple measures, regression trees with

bagging performs the best.

Because the location and operating schedule are carefully chosen by the retailer, we observe

in our data that locations that operate twice a week or have a large number of nearby pick-up

locations have historically higher sales than those locations that are operating once a week or

operating in an isolated area. Therefore, both frequent operations and more nearby locations

are associated with greater consumer demand. As a result, the random forests algorithm would

incorrectly conclude that nearby locations and more frequent operations will lead to higher sales.

However, this is the result of unobservable time-invariant attributes of the location (e.g. high

latent consumer demand). To address this issue, an econometric specification with fixed effects

can be used to remove these unobservable differences across locations. Therefore, we use a two-

step procedure. First, we estimate demand using the random forests algorithm while excluding

endogenous variables (e.g. operating frequency) chosen by the retailer. Second, we use fixed effects

regression to accurately estimate the spatial and temporal cannibalization effects. This two-step

procedure yields our demand prediction model.

In retail operations management, demand estimation using empirical methods has been an

active research area. Fisher and Raman (1996) Fisher and Raman (1996) utilize dispersion in expert

opinion and historical data to estimate demand probability distributions for fashion products. Caro

and Gallien (2012) use a multiplicative regression model to predict demands for clearance prices in

a fashion retail setting. Fisher and Vaidyanathan (2014) estimate demand for attribute levels and

substitution probabilities of products using a maximum likelihood estimation in a retailing setting.

Ferreira et al. (2015) use regression trees with a bagging method for their demand estimation.

We add to this literature by presenting a combined method that utilizes both machine learning

method as well as an econometrics model, to overcome limitations of machine learning methods.
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Importantly, we find that our combined method outperforms both random forests and least squares

regression in out of sample prediction accuracy.

Finally, we present a simple heuristic that can be easily implemented to improve retailer per-

formance when the retailer is faced with the spatio-temporal location problem. In our setting, we

estimate that our heuristic can result in a 6% to 18% increase in profit when 3 locations in each

market are optimized.

We believe our method can provide a road-map for companies to improve their location selection

and scheduling. One direct application would be to optimize the location selection for the growing

number of Healthcare-on-wheels operations, such as ambulance location problems (e.g.Brotcorne

et al. (2003)). These operations face the spatio-temporal problem and can similarly use our empiri-

cal strategy to ensure they are at the right place at the right time. More generally, our methodology

can also be applied to more traditional retailers, as they must also optimize the location and operat-

ing time of their stores. The spatio-temporal problem is especially relevant for traditional retailers

with a large number of stores. One example is Starbucks. In many urban areas, there are more

than one Starbucks location within a 1 mile radius. Our results suggest that Starbucks and similar

companies should not only consider the environmental attractiveness of potential locations, but

also consider the potential cannibalization from nearby locations.

Our methodology can also be applied to retailers that only consider the spatial problem, without

the temporal component (e.g., a retailer that operates 10-6 without variation, or 24-7). For example,

Amazon.com offers customers the option to pick-up orders at Amazon lockers. Amazon needs to

determine where and how many lockers to add to each market, but does not need to consider

the operating hours of its lockers for most locations. Car-sharing businesses, such ZipCar, also

need to determine their car pick-up locations. Undoubtedly, Amazon and ZipCar’s problems are

complicated by the availability of lockers and cars, respectively. However, their flexibility to move

locations provides them with varied and high-frequency data that can be readily paired with our

methodology to determine areas of high demand. Ultimately, any company that physically interacts

with customers needs to determine where the point-of-contact will be and can potentially benefit

from adopting our methodology.

The remainder of the paper is organized as follows. We formulate the spatio-temporal problem

in a general setting and present special cases in §2. We present our prediction method in §3 and

describe two algorithms to improve location-scheduling solution in §4. In §5, we discuss results and

we conclude in §6.
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2 The Spatio-Temporal Location Problem

2.1 Problem Formulation

A firm’s spatio-temporal problem is to determine where to locate its retail locations and when to

operate each location to maximize its revenue for a given week. Let L denote the set of all potential

locations and T denote the set of all possible days of operation.

For each potential location i ∈ L and day (or time period) t ∈ T, the firm decides whether to

operate. Let xit = 1 if firm operates location i on day t, and otherwise xit = 0.

We formulate the spatio-temporal problem as an integer program:

max
∑
i∈L

∑
t∈T

xit(Rit −
∑
i 6=j

Sij ·max
t∈T
{xit} ·max

t∈T
{xjt} −

∑
s 6=t

Tts · xis) (1)

s.t.
∑
i

xit ≤ K, (2)

xi,j ∈ {0, 1}∀i, j ∈ L. (3)

Next, we define the variables used in the integer program:

• Rit: The firm earns revenue of Rit when location i operates on day t if it is the only operating

time and location.

• Sij: If there is another location j within D miles, regardless of location j’s operating day, location

i’s revenue on day t will be cannibalized and decreased by Sij . The parameter D will be

determined in our empirical analysis. This spatial cannibalization captures the loss of demand

from customers who prefer location j over location i, yet without the presence of location j

would have used location i.

• Tts: If location i is also open on day s, location i’s revenue on day t will be cannibalized and

decreased by Tts. This temporal cannibalization captures the loss of demand from customers

who prefer day s over day t, yet if location i only operated on day t would have come on day

t.

• K: The firm has limited capacity and can operate maximum of K times in a given day. If there

is no resource constraint, K = n(L) ∗ n(T).

Note that when the subscript is a location-time pairing it indicates a location-day operation.
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When the subscript is a location-location or time-time pairing, it indicates cannibalization of the

first subscript event by the second subscript event.

The objective function is the sum of revenue earned at each operation (i.e. location-day pairing)

the firm decides to open. The second term in (1) is the sum of spatial cannibalization effects on

location i, and the max terms captures the intuition that regardless of operating day of other

locations, a spatial cannibalization occurs as long as two locations are open. The third term in

(1) captures the temporal cannibalization that occurs when the location is open more than once a

week.

2.2 Special Cases of Spatio-Temporal Location Problem

If we impose further restrictions, our spatio-temporal problem reduces to a known class of problems.

In this sub-section, we present three special cases.

Case 1 (No Cannibalization Effects): Suppose S = T = 0.

When there is no spatial or temporal cannibalization effect, the optimal solution to the spatio-

temporal problem is selecting the K operations with largest Rit. In this setting, a greedy algorithm

finds the optimal solution. In a more general facility location problem setting, prior work finds that

the greedy algorithm performs sufficiently well. (Cornuejols et al. (1977))

Case 2 (No Spatial Cannibalization Effects): Suppose S = 0 and Rit = Ri.

When there is no spatial cannibalization effect, the problem reduces to finding the optimal

number of times to operate for each location. Due to the temporal cannibalization effect, additional

operating days have diminishing marginal returns. In our formulation, the optimal solution is

achieved when Ri = T ·
∑
t∈T

xit (i.e. marginal return = marginal cost) at each location.

Case 3 (No Temporal Cannibalization Effects): Suppose T = 0 and Rit = R.

When all potential locations provide the same profit and there is no temporal cannibalization

effect, our problem reduces to a version of densest k-subgraph problem. We describe the dens-

est k-subgraph problem and articulate how this special case of our optimization problem can be

characterized as a densest k-subgraph problem. (Feige, Peleg, and Kortsarz, 2001)

Let G(V,E) be an undirected graph with |V | vertices and |E| edges. Suppose U ⊆ V and let

E(U) be edges in U . The density d(U) is defined as |E(U)|/|U |. The densest k-subgraph problem

is to find U∗, a subgraph of G with k vertices such that G∗ is of maximum density denoted as

d∗(G, k).
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Now suppose each vertex represents a potential location. Since there is no temporal cannibal-

ization effect, we ignore the temporal part of the integer programming. Because all edge weights

are non-negative in the dense subgraph problem, we assign an arbitrarily large weight, W , to each

edge at start. As one location (i.e. vertex) is chosen to be open, the nearby locations within D

miles will suffer from the spatial cannibalization if open. For the vertex representing these loca-

tions, we subtract S from the edge weight. Ultimately, the problem reduces to finding the densest

K-subgraph after accounting for the spatial cannibalization by changing the edge-weights based on

the vertex selection.

These special cases highlight some of the unique characteristics of our formulation, as well as

the complexity of our problem setting.

3 Empirical Method

In this section, we describe our data and how we use our data to estimate revenue, spatial canni-

balization, and temporal cannibalization for potential locations. We were asked to ensure confiden-

tiality of the retailer’s data, and to avoid disclosure we present the retailer specific statistics and

results scaled by a factor. Specifically, any results regarding a sales figure is linearly transformed.

3.1 Data

We combine three different sources of data. The first source is our partner retailer’s sales transaction

data from January 2014 to December 2015. For each pick-up location that operated, we have the

following variables: location ID, location name, location type (e.g. business, school, etc.), total

sales, date, day of week, latitude and longitude. From this data, we can also track for each

location-day operation the number of other pick-up locations operated in the same week within

0.3, 0.5, 1, 3, 5, 7 and 10 miles radii and also for various sized circular rings (i.e., annuli). Note

that only a few observations operate on the same day and in close proximity to one another. More

commonly, nearby locations will operate on different days of the week (e.g. Monday and Thursday).

Therefore, in our empirical model, we allow nearby locations that operate in the same week to have

a cannibalization effect on one another. This reflects the intuition that a location operating on

Thursday will cannibalize sales from a nearby location that operates on Monday.

The retailer also offers home delivery and office delivery services. Home delivery is for one order

and office delivery is for multiple orders. To capture a potential cannibalization and/or word-of-
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mouth effect from these operations, we also track whether or not home delivery was available in

each ZIP code for each week, and the number of office delivery locations operating on the same

week within various radii and various sized circular rings.

The second source is the U.S. Census Bureau’s demographic and economic data which provides

macro environment factors. These data are available in two publicly accessible databases. The first

is the American Community Survey (ACS) 5-year Estimates in block group geo-database. Block

groups are the most granular data that ACS is provided and they generally contain between 600

and 3000 people. (Bureau of the Census (1994))

The ACS contains over 19000 statistics on average age, sex, race, place of birth, education

attainment, marital status, family status, income level, housing value and more. Of these, we use

the following variables: total population, female population, male population, population with post-

secondary degree, number of households, number of households with minor, number of households

with income greater than $75,000, median age, median housing value, median income and mean

income. We choose to focus on these variables after talking to our partner retailer on their target

market and the characteristics it looks for when selecting locations.

The other U.S. Census Bureau database we use is the County Business Patterns (CBP) in ZIP

code level database for the last three years. In this data set, ZIP code is the smallest geographic

entity for which business pattern data are available. The database contains the employment size for

each ZIP code. For the ZIP codes where this value is suppressed for confidentiality and is provided

as a range of the employment size, we use the median of the range. For each ZIP code, we then

compute the labor density in square miles based on this data.

The third source we use is OpenStreetMap which provides data on business locations. Open-

StreetMap offers user-contributed business location data for free. More details can be found on

http://www.openstreetmap.org/. We decide which business locations to use in our prediction

model based largely on which micro factors the retailer indicated they are most affected by. Based on

these conversation, we use 7 different types of locations: school, university, kindergarten, church,

Starbucks, our retailer’s competitors (e.g. department stores), a specific direct competitor (e.g.

Nordstrom). We decide to focus on these locations for three reasons. First, these data were more

accurate than some other location types, such as gym or yoga studio, when cross-validated with

other map data. Second, many of these location types are used as a pick-up location because con-

sumers visit them on a regular basis. Third, we want to capture the effect of location competition

on location performance.
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Figure 1: Surrounding Area Partitioned by Block Groups For A Location. The smaller circle in
white is a 0.5 miles radius and the outer ring in grey represents an area from 0.5 miles to 1 mile
radius from a location.

We then combine these data to create a panel data set. For demographic data and nearby

business location data, we determine how each attribute will be measured. For demographic infor-

mation, we compute the area-weighted mean of each variable within 0.5, 1, 3, and 5 miles radii and

various sized circular rings for each location. Similarly, for business location data, we compute the

number of each type of business locations within various radii and in various sized circular rings

for each pick-up location. These data were mainly processed using a open-source geographical

information system application called QGIS.

To depict this process, we include a map of a location in Figure 1 with two defined areas: a

0.5 miles radius circle and a 0.5 miles to 1 mile radius circular ring. The areas are partitioned

by the block group sectioning and confined by the defined radii. Each block group includes its

demographic and economic attributes that we described earlier. These attributes are weighted by

the area of block group. By summing these weighted attribute for all block groups within the

defined area, we calculate surrounding area attributes for each location. For example, to calculate

attributes for the 0.5 miles radius circle specific to this location, we process 12 data points. Note

that this location is in a suburban area and some 0.5 miles radius circle areas for locations in an

urban area can consist of over 30 blockgroups and obviously a much greater number of data points

for larger surrounding areas.

In total, for each location-day operation, we use 205 explanatory variables to predict our de-
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Data Source Variable Definition

Sales Total dollar sales from location‐day opeartion

Location type Type of pick‐up location (e.g. Business, School, etc.)

Day of week Day of week

Month Month

Year Year

Home delivery availability
1, if home delivery service was available in the zip code 

of the location this week; 0, otherwise

Office delivery

Nearby pick‐up locations

Operating Frequency
Number of operating days of this location this week

Total population

Female population

Male population

Population with post‐secondary degree

Households

Households with minor

Households with income greater than $75000

Median age

Median housing value

Median income

Mean income

Labor density
Number of employees per square miles in zipcode of the 

location

Population density
Number of residents per square miles in zipcode of the 

location

Business district
1, if labor density is greater than population density; 0, 

otherwise

School

University

Kindergarten

Church

Starbucks

Competitors

Direct Competitor

Retailer's sales and operations 

data

# of office delivery/pick‐up locations within 0.3, 0.5, 1, 3, 

5, 7 and 10 miles radii and in 0.3 to 0.5, 0.5 to 1, 1 to 3, 3 

to 5, 5 to 7 and 7 to 10 miles circular rings of the location

US Census Bureau ‐ American 

Community Survey 5 Year 

Estimates

Area weighted average of each variable within 0.5, 1, 3, 

5 miles radii and in 0.5 to 1, 1 to 3, 3 to 5 miles circular 

rings of the location

US Census Bureau ‐ County 

Business Patterns

Open Street Map

# of office delivery/pick‐up locations operated within0.5, 

1, 3, 5, 7, 10 and 15 miles radii and in 0.5 to 1, 1 to 3, 3 to 

5, 5 to 7, 7 to 10  and 10 to 15 miles circular rings of the 

location

Figure 2: Summary of Variables

pendent variable, sales. The variables are summarized in Figure 2.

3.2 Revenue Prediction Using Machine Learning: Estimating R

To predict location revenue, we use random forests which is a machine learning algorithm developed

by Breiman (2001). In this subsection, we briefly describe the algorithm and discuss the features

of the algorithm relevant to our setting.

From the training data, the random forests algorithm draws a default of 500 bootstrap samples

(this default number can be changed depending on the data; on our setting, 500 samples did just

as well as 1000 samples, and hence, we use 500 samples.) For each sample, the algorithm grows
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a regression tree. Regression trees recursively partition the data based on the attributes. The

mean response in each partitioned group becomes the prediction value for the regression tree. The

prediction value from the random forests is an average prediction from all 500 regression trees.

Further information can be found on Breiman (2001) and Liaw and Wiener (2002).

We choose to use random forests because they are known to be more accurate than other

machine learning algorithms or regression models. Ferreira et al. (2015) find that the regression

tree with bagging method, on which random forests is based, predicts sales more accurately when

compared to five other regression methods. We also find that random forests predict better than

least square regressions (we share this result in §3.4).

Furthermore, random forests can run on large databases efficiently, and it can also incorporate

a large number of explanatory variables without variable deletion. This latter feature is important

in our setting, as many of our variables are linearly dependent: the number of nearby locations in

a circular ring is defined as a linear combination of the number of nearby locations in the larger

radius and the number in a smaller radius. As a result, in a linear regression, these variables will

be multi-collinear and one will be excluded from the empirical model. However, in reality, these

variables may be important determinants of a location’s success.

Last but not least, random forests is a non-parametric method. As mentioned in Ferreira et al.

(2015) , this improves prediction accuracy when there are nonmonotonic relationships between the

response variable and explanatory variables. This is precisely the case for many of our independent

variables. For example, if a location is in a low demand area where there are no other competitors,

the sales performance may be worse than when having one or two competitors in a high demand

area. However, if the market is overcrowded by too many competitors, the sales performance would

suffer. Similar arguments can apply for demographic variables. Since the company is an online

retailer, a location in an area with many retirees (i.e. high median age) may not perform as well.

However, since the retailer sells luxury goods, a location in a college town (i.e. low median age)

may not perform well either. The ideal target market is then perhaps somewhere in between these

groups.

One commonly criticized feature of random forests is the lack of interpretability given that it

uses a large number of explanatory variables and the prediction values are based on a large number

of different regression trees. Despite this downside, we still prefer using random forests for its

superior prediction accuracy.

A perhaps less discussed feature of machine learning, which is very important in our setting,
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is the inability to address endogeneity. In our setting, two variables suffer from omitted variable

bias: Operating frequency and Number of nearby pick-up locations. Both these terms are positively

correlated with market demand, and market demand is also positively correlated with sales. In

fact, when we look at the raw data, we see that locations that operate more than once and locations

that have other nearby locations have higher sale than those locations that operate only once and

have no other nearby locations. As a result, the random forests associate an increase in Operating

frequency and Number of nearby pick-up locations with an increase in sales. However, this is clearly

not true as sales would decrease due to cannibalization effects. Therefore, we remove operating

frequency and number of nearby pick-up locations variables from the random forests model and

proceed with the prediction using 190 explanatory variables.

3.3 Cannibalization Effects Estimation Using Fixed Effects Regression: Esti-

mating S & T

Because the revenue prediction for potential locations does not account for the cannibalization

effects of Operating frequency and Number of nearby pick-up locations, we use a fixed effects re-

gression to estimate these cannibalization effects. Our strategy builds on prior work that has use

fixed or random effects to address endogenous effects. For example, Cachon and Olivares (2010)

use fixed effect estimation to address endogeneity in their automobile data. Similarly, Rajagopalan

(2013) uses random effects estimation to address omitted variable bias in his data. The author

states that he could not use fixed effects estimation due to the short time span of his data. Because

the time span of our data is longer, we are able to use fixed effects estimation to address bias in

our setting.

The idea is simple. The intrinsic market demand for a location does not change after controlling

for time-varying location features (e.g. time trends and seasonality). Therefore, by controlling for

location with fixed effects, we can effectively capture the cannibalization effects. In other words, if

a location changed operating frequency or if the number of nearby locations changed throughout

its lifetime, we can capture the average effect of those changes for all locations after controlling for

seasonality and day of week.

Because it is practically impossible to estimate spatial and temporal cannibalization for every

potential location, we assume that the spatial cannibalization and temporal cannibalization pa-

rameters are the same across all locations and time. Note that varying cannibalization effects can

be addressed by solving the spatio-temporal problem separately on the level at which the problem
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varies. For example, if we found evidence that cannibalization effects vary across markets, we could

address this issue by solving the spatio-temporal location problem separately in each market. In our

setting, the data at each market level is too sparse to estimate the cannibalization effects robustly.

We assume that the spatial cannibalization effect decreases as the distance between two locations

increases. This assumption is similar to that of the gravity model. A notable difference is that we

assume a constant cannibalization effect within a range of distances. More specifically, for each

specified distance range, there is a constant spatial cannibalization effect. Furthermore, there is

a threshold distance beyond which the spatial cannibalization no longer occurs. We empirically

determine the thresholds and estimate the corresponding spatial cannibalization effects.

Similarly, we postulate that the temporal cannibalization effect varies based on how recent the

location was open. This is especially applicable in our setting because the retailer sells consumable

goods and the customers may want to shop more than once a week. The retailer does not change the

location configuration or operation on a weekly basis, and therefore, we assume that the location

operating days are the same in the previous week for modeling purposes. For example, suppose

a location is open twice a week, on Monday and Thursday. For the Monday location, the last

open day is Thursday the week before, and it would be 4 days since the location was open. For

the Thursday location, the last open day is Monday, and it would be 3 days since the location

was open. Going forward, we will call this duration as recency duration. We speculate that the

temporal cannibalization effect increases as the recency duration decreases and show that indeed

our hypothesis is supported in the data.

Now we present our model specification to estimate the cannibalization effects:

Saleijts = α0 +
∑
δ

βδNearbyLocations
δ
it +

∑
τ

γτ i.RecencyDuration
τ
it

+
∑
i

υiLocationi +
∑
j

ωjDayOfWeekj +
∑
s

ψsY earMonths + εijts. (4)

The subscript i indicates Location, j indicates Day of Week, t indicates Date and s indicates

YearMonth. The variable, Nearby Locations, is continuous and allow us to estimate the spatial

cannibalization in each distance range. We use 0.5, 1, 3, 5, and 7 miles as a threshold for each

range (i.e. within 0.5 miles, from 0.5 miles to 1 mile, etc.). The Recency Duration variables are

binary variables for τ from 1 to 7 and indicate how many days ago the location was open most

recently. For example, if the location was open 3 days ago, i.RecencyDuration3 = 1 and all other
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i.RecencyDurationτ = 0. Since we are interested in the temporal cannibalization within a week,

we group any observations with recency duration greater than 7 days (e.g. a location opens once

a week, but did not open on a particular week due to a public holiday) with the observations with

7 days recency duration. We use this group as the base line for the regression results. Therefore,

the Recency Duration variables capture the change in sales from once a week operation to when

the most recent operation of the location was less than 7 days ago. The three control variables,

Location, Day Of Week and YearMonth are all binary variables and control for location-specific

effects, day-of-week effects, and seasonality and sales growth effects that vary by month and year,

respectively. While not explicit in the model specification, we omit one binary variable for each

control to avoid perfect multicollinearity.

The regression result for the specification (6) is summarized in (a) of Table 1. We use Total

Sales as a dependent variable. First, the estimates for Nearby Locations variables suggest that the

spatial cannibalization effect is highest within 0.5 miles and the estimated effect for having one

additional nearby location within 0.5 miles is −$108.68. The spatial cannibalization effect from 1

mile to 3 miles is −$21.40 which is approximately one-fifth of the the effect for within 0.5 miles.

The other nearby variables are statistically insignificant, suggesting that the spatial cannibalization

effect disappears beyond a 3 miles radius.

Turning to the Recency Duration variables, we find that the temporal cannibalization effect is

much greater when a location was open 2 days ago, −$549.95, compared to the effect for longer

recency durations (estimates ranging from −$188.82 to −$376.02). Based on a F-test of the dif-

ference of coefficients, none of the coefficients of the Recency Duration variables for 4 to 6 days

are statistically different from one another, nor are the 3 and 6 days recency duration variables

statistically different from one another. Therefore, we conclude that the temporal cannibalization

effect drops significantly when the recency duration is 3 days or longer. Note that there was only

one observation that was open on consecutive days and as a result, we are not able to effectively

estimate the effect of temporal cannibalization for a one day recency duration. However, this is be-

cause such durations are never used by the retailer, and not because of a deficiency in our modeling

strategy.

In order to capture the cannibalization effects parsimoniously, we run another specification with
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Table 1: Spatial and Temporal Cannibalization Effect.

Model (a) (b)

Nearby locations within 0.5 miles ­108.68*** ­99.53***
(34.150) (34.340)

Nearby locations from 0.5 miles to 1 mile ­10.29
(17.366)

Nearby locations from 1 mile to 3 miles ­21.40***
(4.652)

Nearby locations from 3 miles to 5 miles ­1.24
(6.075)

Nearby locations from 5 miles to 7 miles 3.14
(5.545)

Nearby locations from 0.5 miles to 3 miles ­20.40***
(4.151)

i.Recency duration: 1 day ­37.49
(40.885)

i.Recency duration: 2 days ­549.95***
(66.438)

i.Recency duration: 3 days ­188.82***
(51.649)

i.Recency duration: 4 days ­376.02***
(50.385)

i.Recency duration: 5 days ­321.11***
(76.840)

i.Recency duration: 6 days ­288.29***
(103.091)

i.Recency duration < 3 days (if operating twice a week) ­589.09***
(66.487)

i.Recency duration ≥ 3 days  (if operating twice a week) ­244.46***
(40.414)

Location Control Y Y
MonthYear Control Y Y
Day of Week Control Y Y

No. of observations 12,803 12,803
R­squared 0.650 0.647
Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.10
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new variables:

Saleijts = α0 +
∑
δ

βδNearbyLocations
δ
it

+ Γ1i.RecencyDurationLessThan3 + Γ2i.RecencyDurationGreaterThan2

+
∑
i

υiLocationi +
∑
j

ωjDayOfWeekj +
∑
s

ψsY earMonths + εijts. (5)

In this specification, we include continuous variables capturing the number of nearby locations

within 0.5 miles and from 0.5 miles to 3 miles. We do not include farther distances based on the

evidence in column (a) that locations which are more than 3 miles away do not have a cannibaliza-

tion effect. We introduce two new indicator variables to capture the temporal cannibalization effect

for locations that are open twice a week. This is based on the evidence in column (a) that there are

two levels of cannibalization effects. The Recency Duration Less Than 3 variable indicates whether

the location’s recency duration is 1 or 2 days and the Recency Duration Greater Than 2 variable

indicates whether the location’s recency duration is 3 days or longer.

The regression result of our final model is summarized in Table 1 column (b) . TotalSales is

the dependent variable. Our estimates suggest that having one additional location within 0.5 miles

radius results in a sales decrease of $99.53. When this range changes to 0.5 miles to 3 miles, the

spatial cannibalization effect for an additional location becomes −$20.40. In addition, there is a

notable difference between the temporal cannibalization when the recency duration is less than 3

days and is greater than equal to 3 days. These estimates suggest that when the location is open

twice a week and the recency duration is less than 3 days, sales decrease by $589.09. Similarly,

when the location is open twice a week and the recency duration is greater than equal to 3 days,

sales decrease by $244.46.

As a robustness check, we estimate the temporal cannibalization effect of operating twice a

week using the random forests method. We use only the observations that operated once a week in

the training set. Using this random forests model, we estimate sales for observations that operated

twice a week. The model estimates sales for these observations as if they operated once a week, and

therefore when we compare the prediction result against the actual sales of these observations, the

average over-prediction can be interpreted as an estimate for the temporal cannibalization effect.

The average over-prediction is $111.72, which is smaller than what we obtain in the fixed effects

regression.
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Figure 3: Accuracy Comparisons of Three Models.

3.4 Accuracy Comparisons

In this subsection, we present the out-of-sample prediction accuracy of our estimation method and

compare the performance against two other models: random forests model with all explanatory

variables including Operating frequency and Number of nearby pick-up locations, and least square

regression model without Operating frequency and Number of nearby pick-up locations, and later

adjusted based on the fixed effects regression.

We use the first 18 months in our data as a training set and the last 6 months as a validation

set. We use the cannibalization estimates from the training set using the fixed effects specification

(7) in §3.3. In Figure 3, we present the accuracy comparisons using Mean Absolute Percent Error

(MAPE). When we use other measurements such as Median Absolute Percent Error (MdAPE),

Mean Absolute Error (MAE), and Median Absolute Error (MdAE), the results are similar. We

group the observations in the validation set into three categories: locations that operate once a

week and have no nearby locations, locations that operate once a week and have nearby locations,

and locations that operate twice a week and have nearby locations (there was no observation where

it operated twice a week and had no nearby locations). Note that the axis of the graph is manually

adjusted for ease of comparison, and the MAPE for no nearby locations and operating once a week

observations (the first blue bar in the graph) is 157%.

First, we note that both random forest methods outperform least square regressions significantly

in all three categories, but especially in the first category to which most observations belong. In

all three categories, the combined method model outperform both the regression model and the

random forests only model.

Finally, we point out that this accuracy comparison is a conservative measure on the benefit

that the fixed effect regression provides since the validation set is just as endogenous as the training
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set (i.e. the retailer strategically chose to add additional operations in a high demand area). As a

result, random forests with the endogenous variables do not suffer from the incorrect association

between frequency or nearby locations and sales as much as randomly chosen locations. In other

words, predicting high demand when more operations in an area is observed would yield a rather

accurate forecast. However, as we stressed, this will not result in an accurate forecast when we

apply it to randomly selected potential locations.

4 Potential Location Set Generation and Heuristic Improvement

Given the set of potential locations and the operation performance predictions from our empirical

model, we present a greedy algorithm and an interchange algorithm to improve the retailers pick-

up location operation in both the time and space dimensions. The most valuable feature of our

prediction method is that it can be applied to any potential location that needs to be evaluated

as long as we can generate the attributes used in the prediction model. In order to estimate the

profitability of potential locations, we create a grid of points in 0.4 mile increments across the

states that the retailer is operating in. Of these locations, we filter out the ones that do not have

target market characteristics based on density and median income level. In addition, to prevent

inappropriate extrapolation, we only consider those locations that are within 10 miles of historical

locations. This generates 56,443 potential locations.

For each potential location, we create six feasible day events and predict revenue based on the

location’s attributes. Assuming that the retailers do not have any locations operating (i.e. all

potential location will operate once a week and there are no other locations nearby), we predict

each locations performance using a random forests model. This yields a revenue prediction map

which can guide the retailer when evaluating potential new markets to enter. Figure 4 shows a

snapshot of an area with potential locations in circles and actual locations in stars. The color map

is based on the percentile of the average actual sales for a particular month. Despite the fact that

the potential locations are out-of-sample predictions for that month and are not accounting for

operating frequency and nearby locations, we can see that most predictions are aligned with the

actual performance observed.

Given these predictions and cannibalization estimations, we use a greedy algorithm to identify

an improved location configuration and operating schedule for N number of operations.
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Figure 4: Initial Prediction Against Actual Sale.

Greedy Algorithm:

1. Predict each potential locations daily revenue from Monday to Saturday using random

forests.

3. Subtract the cannibalization effects from the applicable predictions.

4. Determine the new location operations with the highest predicted revenue.

5. If this is N th iteration, terminate. Otherwise, go back to step 2.

This algorithm can be applied when the retailer is looking to enter a brand new market. For

the existing markets, our partner retailer wanted to limit the scope of potential changes. Therefore,

we also develop an interchange algorithm to close N currently operating locations and open N new

locations. These additional operations could be a new physical location or an additional operating

day in the week of a currently operating location.

Interchange Algorithm:

1. Update the potential locations to reflect current operation based on distance.

2. Predict each location’s daily revenue from Monday to Saturday using random forests.

3. Subtract the cannibalization effects from the applicable predictions.

4. Determine the new location operation with highest predicted revenue.

5. Compare 4 with the lowest prediction for operating locations.

6. If 5 < 4, close the operating location and open the new location. Otherwise, terminate the
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algorithm.

7. If this is N th iteration, terminate. Otherwise, go back to step 3.

Note that our setting is characterized by many of the features that Zanakis and Evans (1981)

suggest lend themselves to the use of heuristics instead of solving for an exact solution. Most

notably, we are optimizing over predictions and oftentimes, the prediction errors will outweigh

any improvement in the algorithm despite the use of a highly accurate method. In addition, our

heuristic still yields a significant improvement in predicted sales over the current configuration, and

it is easy to understand for anyone such that it can provide confidence for our partner retailer.

5 Results

5.1 Algorithm Performance and Choices

To estimate the retailer’s expected benefits of implementing our heuristics, we obtain the recent

location configuration and schedule for a given week, as well as the number of trucks available to

each fulfillment center. We find the improved configurations using the greedy algorithm and the

interchange algorithm, keeping the number of operations in each market and the number of trucks

available to each fulfillment center the same as actual. The number of trucks add a constraint on the

maximum number of locations that can operate each day in the areas serviced by the corresponding

fulfillment center. We then compare the predicted revenue from the improved configurations against

the actual sales earned in that given week in Figure 5.

The greedy algorithm results in a 34.8% estimated increase in a weekly revenue. We also ran

the interchange algorithm beginning with the optimal configuration based on the greedy algorithm,

but did not find any changes that result in an increase in revenue.

The interchange algorithm starting from the current configuration results in a 35.6% increase

in weekly revenue after 35 interchanges. Additional iterations beyond the 35th do not yield any

improvement. Note that one round of interchange closes and opens one operation in each area

serviced by a fulfillment center. The starting point of the interchange algorithm is lower due to the

prediction error.

The expected improvements from the greedy algorithm and the interchange algorithm have less

than a percent difference and we believe that they are close to the true optimal. Of the selected

locations, the two algorithms share 73%. Finally, we emphasize that any realized benefit from

implementation will directly transfer to the bottom line since this is a very low-cost fix.
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Figure 5: Algorithm Performance.

Figure 6: Interchange Algorithm for 5 Rounds: Market 1 (Partial View).

Next, we examine the location changes suggested by the interchange algorithms. Figure 6 and

7 show the interchange algorithm suggestions in two different markets. The green dots represent

the currently operating locations. The red and blue numbers represent the locations selected to

be closed and opened, respectively, in the corresponding round of the interchange algorithm. We

overlay a heat map representing the predicted sales for each location (without accounting for the

cannibalization effects) on the right hand side maps. The locations with higher predicted revenue

are darker in the heat map.

Figure 6 provides a partial snapshot of Market 1. There are a number of locations that operate

twice a week. We see that in the first round a location in the top left corner is chosen to be closed

. This location was previously open twice a week. After the closure, the location now operates
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Figure 7: Interchange Algorithm Results for 5 Rounds: Market 2.

once a week. In such a situation, we see that there is a green dot overlaying on a red number. A

location right above is chosen to be open instead in round 1. This is not surprising as our estimates

for temporal cannibalization effects are much greater than those for spatial cannibalization effects.

Additional locations are selected to open in the top left corner because predicted revenues are high.

These new locations are selected to be locations more than 0.5 miles away from each other in round

2 and 3. The other closed locations either operate in a low predicted sales area or operate twice a

week.

We see a similar pattern in Figure 7. The locations in the low predicted sales areas are moved to

the areas with high predicted sales. This suggest that the retailer can improve profits by focusing

on high performing areas rather than by exploring new areas. Consistent with this interpretation,

the company’s management team agrees that the algorithm’s suggestions are in line with their

location selection strategy going forward.

5.2 Varying The Cannibalization Estimates

In § 3.3, we stated that some of the spatial and temporal cannibalization effects (e.g. 1 Day Recency

Duration) could not be estimated due to lack of data, and we had to extrapolate the estimation

by grouping the 1 and 2 days recency durations together. Like any other regression estimates,

these cannibalization effect estimates are not definitive. In this subsection, we illustrate how the

estimates affect the location configuration.

Figure 8 on the left contains a spatio-temporal configuration for a selected market when we

define the cannibalization effects to be the upper bound of the 95% confidence interval. The figure
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Figure 8: Spatio-Temporal Configuration Based on a Greedy Algorithm. High Cannibalization vs.
Low Cannibalization.

on the right contains a spatio-temporal configuration when we define the cannibalization effects to

be the lower bounds of the 95% confidence intervals. These configurations are constructed using a

greedy algorithm. We see that when spatial and temporal cannibalization effects are large (i.e. in

the left hand graph), the locations are less concentrated and operate less frequently. In contrast,

when the spatial and temporal cannibalization effects are small (i.e. in the right hand graph), the

locations are more concentrated and operate more frequently in the high demand area.

5.3 Profit Maximization

So far, we have focused on maximizing the retailer’s revenue since there is no location-specific

variable costs associated with operating pick-up locations. One relevant issue that the retailer

wishes to address is identifying the optimal number of locations for each market. In this subsection,

we examine how the operating cost factors into the profit maximization. The fixed cost associated

with purchasing a delivery truck is not accounted for in this analysis.

We apply the greedy algorithm to determine the location configuration and schedule for each

county, for up to 102 operations. We present results for three counties serviced by a same fulfillment

center. On the left hand side of Figure 9, we present how predicted profit changes as we add

operations. On the right hand side of Figure 9, we present how the heuristic optimal number of

operations (i.e. the y axis) changes as we change variable costs from $400 to $900 (i.e. the x-axis).

First, we see that within an area (i.e. county), adding operations increases profits initially,

but due to the temporal and spatial cannibalization effects, adding operations eventually decreases
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Figure 9: Profit Maximization.

profit. The optimal number of operations is determine by the average predicted revenue for all

potential locations in the area and the size of the area. As the average revenue predictions and the

size of the county increase, the optimal number of operations increases (given a constant variable

cost). Both County 1 and County 2 have greater average revenue predictions than County 3

(106.5% and 105.9% of the average revenue in County 3 respectively). In addition, they are also

larger counties than County 3. County 1 is 2.9 times the size of County 3 and County 2 is 1.3

times the size of County 3. Not surprisingly, the optimal number of operations decreases as variable

costs increase. As the variable costs approaches the average revenue of the selected locations, the

optimal number of operations approaches 0.

6 Conclusion

In this paper, we present our collaborated work with an online retailer on improving spatio-temporal

location configuration. We demonstrate how retailers can utilize big data by collecting external

data that are freely accessible and combining them with the retailer’s sales and operations data

to predict the performance of potential locations. We use random forests as our main prediction

model for its superior prediction accuracy. However, random forests cannot address endogeniety

issues present in our data. In order to circumvent this issue, we use a novel two-step procedure:

first, we predict sales using exogenous variables and second, we estimate the effect of endogenous

variables using a fixed effects regression and combine two results. We present a greedy algorithm

and an interchange algorithm to improve location structure and operating frequency, that predicts

a revenue increase of up to 36%. Since these location changes are not costly, most increases in the

revenue will directly result in increases in profits.
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Based on the results of our heuristics, we generate a concrete set of recommendations to our

partner retailer’s operation. In addition, we present a numerical analysis of profit maximization for

a range of operating costs for each location. We are continuing our collaboration with the retailer

to implement and validate our results. This is a lengthy process since the company has to find

appropriate locations near the algorithm selected locations. When the actual location search ends,

we can first predict the weekly revenue based on the changes in the configuration and validate

against the total actual sales after controlling for the sales growth rate.

We believe our work can be used as an empirical blueprint for many retailers to evaluate new

markets and potential locations. Furthermore, our work highlights the abundance of accessible

external data and geographic information systems that allows us to study location problems in new

ways.
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